MERCS: Multi-directional Ensembles of Regression and Classification Trees

نویسندگان

  • Elia Van Wolputte
  • Evgeniya Korneva
  • Hendrik Blockeel
  • KU Leuven
چکیده

Learning a function fX→Y that predicts Y from X is the archetypal Machine Learning (ML) problem. Typically, both sets of attributes (X,Y) have to be known before a model can be trained. When this is not the case, or when functions fX→Y are needed for varying X and Y, this may introduce significant overhead (separate learning runs for each function). In this paper, we explore the possibility of omitting the specification of X and Y at training time altogether, by learning a multi-directional, or versatile model, which will allow prediction of any Y from any X. Specifically, we introduce a decision tree-based paradigm that generalizes the well-known Random Forests approach to allow for multidirectionality. The result of these efforts is a novel method called MERCS: Multi-directional Ensembles of Regression and Classification treeS. Experiments show the viability of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting The Type of Malaria Using Classification and Regression Decision Trees

Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...

متن کامل

Tree ensembles for predicting structured outputs

In this paper, we address the task of learning models for predicting structured outputs. We consider both global and local predictions of structured outputs, the former based on a single model that predicts the entire output structure and the latter based on a collection of models, each predicting a component of the output structure. We use ensemble methods and apply them in the context of pred...

متن کامل

Factors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis

Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predi...

متن کامل

A comparison of stacking with meta decision trees to other combining methods

Meta decision trees (MDTs) are a method for combining multiple classifiers. We present an integration of the algorithm MLC4.5 for learning MDTs into the Weka data mining suite. We compare classifier ensembles combined with MDTs to bagged and boosted decision trees, and to classifier ensembles combined with other methods: voting, grading, multi-scheme and stacking with multi-response linear regr...

متن کامل

Using Model Trees and Their Ensembles for Imbalanced Data

Model trees are decision trees with linear regression functions at the leaves. Although originally proposed for regression, they have also been applied successfully in classification problems. This paper studies their performance for imbalanced problems. These trees give better results that standard decision trees (J48, based on C4.5) and decision trees specific for imbalanced data (CCPDT: Clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017